Search results

1 – 10 of 13
Article
Publication date: 1 March 1990

A.E. Kanarachos, N. Koutsidis and C.N. Spentzas

We present a combined or mixed method for the dynamic analysis of thin‐walled structures, based on the superposition of beam and shell strains and displacements. Polynomial or…

Abstract

We present a combined or mixed method for the dynamic analysis of thin‐walled structures, based on the superposition of beam and shell strains and displacements. Polynomial or exact shape functions are used for the interpolation of the shell displacements, while discrete degrees of freedom are introduced instead of the generalized von Karman coefficients. Special attention has been given to the integration schemes, because of the combined beam and shell behaviour of the considered structures. The stability and accuracy of the four‐point integration scheme are studied by using the z‐transform. The method is applied to thin‐walled pipes and is also compared to the von Karman approach.

Details

Engineering Computations, vol. 7 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 1993

A.E. KANARACHOS and I.P. VOURNAS

An optimized multigrid method (NSFLEX‐MG) for the NSFLEX‐code (Navier‐Stokes solver using characteristic flux extrapolation) of MBB (Messerschmitt Bolkow Blohm GmbH) is described…

Abstract

An optimized multigrid method (NSFLEX‐MG) for the NSFLEX‐code (Navier‐Stokes solver using characteristic flux extrapolation) of MBB (Messerschmitt Bolkow Blohm GmbH) is described. The method is based on a correction scheme and implicit relaxation procedures and is applied to two‐dimensional test cases. The principal feature of the flow solver is a Godunov‐type averaging procedure based on the eigenvalues analysis of the Euler equations by means of which the inviscid fluxes are evaluated at the finite volume faces. Viscous fluxes are centrally differenced at each cell face. The performance of NSFLEX‐MG is demonstrated for a large range of Mach numbers for compressible inviscid and viscous (laminar and turbulent) flows over a RAE‐2822 airfoil and over a NACA‐0012 airfoil.

Details

Engineering Computations, vol. 10 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1988

A.E. Kanarachos and C.N. Spentzas

Considering typical self‐adjoint and non‐self‐adjoint problems that are governed by differential equations with predominant lower order derivatives, a comparison is presented of…

Abstract

Considering typical self‐adjoint and non‐self‐adjoint problems that are governed by differential equations with predominant lower order derivatives, a comparison is presented of their finite element solutions by Ritz, Galerkin, least square (LSQ) and discrete least square (DLSQ) methods.

Details

Engineering Computations, vol. 5 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 May 1994

I. Antoniadis and A. Kanarachos

Although the existence of a close relationship between the areas ofdigital signal processing and time integration methodology is known, asystematic application of the concepts and…

Abstract

Although the existence of a close relationship between the areas of digital signal processing and time integration methodology is known, a systematic application of the concepts and methods of the first area to the second is missing. Such an approach is followed in this paper, arising from the fact that any time integration formula can be viewed as a digital filter of the applied excitation force, approximating as close as possible to the behaviour of a ‘prototype analogue filter’, which is in fact the semi discrete equations of motion of the system. This approach provides a universal framework for handling and analysing all various aspects of time integration formulae, such as analysis in the frequency domain, algebraic operations, accuracy and stability, aliasing, spurious oscillations generation, introduction of digital filters within the time integration formula, initial conditions handling and overshooting. Additionally it is shown that digital signal processing methods, such as pre‐ or post‐processing, time delays, etc. can be in certain cases a quite effective complement of the time integration scheme.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 December 2021

Neetika Jain and Sangeeta Mittal

A cost-effective way to achieve fuel economy is to reinforce positive driving behaviour. Driving behaviour can be controlled if drivers can be alerted for behaviour that results…

Abstract

Purpose

A cost-effective way to achieve fuel economy is to reinforce positive driving behaviour. Driving behaviour can be controlled if drivers can be alerted for behaviour that results in poor fuel economy. Fuel consumption must be tracked and monitored instantaneously rather than tracking average fuel economy for the entire trip duration. A single-step application of machine learning (ML) is not sufficient to model prediction of instantaneous fuel consumption and detection of anomalous fuel economy. The study designs an ML pipeline to track and monitor instantaneous fuel economy and detect anomalies.

Design/methodology/approach

This research iteratively applies different variations of a two-step ML pipeline to the driving dataset for hatchback cars. The first step addresses the problem of accurate measurement and prediction of fuel economy using time series driving data, and the second step detects abnormal fuel economy in relation to contextual information. Long short-term memory autoencoder method learns and uses the most salient features of time series data to build a regression model. The contextual anomaly is detected by following two approaches, kernel quantile estimator and one-class support vector machine. The kernel quantile estimator sets dynamic threshold for detecting anomalous behaviour. Any error beyond a threshold is classified as an anomaly. The one-class support vector machine learns training error pattern and applies the model to test data for anomaly detection. The two-step ML pipeline is further modified by replacing long short term memory autoencoder with gated recurrent network autoencoder, and the performance of both models is compared. The speed recommendations and feedback are issued to the driver based on detected anomalies for controlling aggressive behaviour.

Findings

A composite long short-term memory autoencoder was compared with gated recurrent unit autoencoder. Both models achieve prediction accuracy within a range of 98%–100% for prediction as a first step. Recall and accuracy metrics for anomaly detection using kernel quantile estimator remains within 98%–100%, whereas the one-class support vector machine approach performs within the range of 99.3%–100%.

Research limitations/implications

The proposed approach does not consider socio-demographics or physiological information of drivers due to privacy concerns. However, it can be extended to correlate driver's physiological state such as fatigue, sleep and stress to correlate with driving behaviour and fuel economy. The anomaly detection approach here is limited to providing feedback to driver, it can be extended to give contextual feedback to the steering controller or throttle controller. In the future, a controller-based system can be associated with an anomaly detection approach to control the acceleration and braking action of the driver.

Practical implications

The suggested approach is helpful in monitoring and reinforcing fuel-economical driving behaviour among fleet drivers as per different environmental contexts. It can also be used as a training tool for improving driving efficiency for new drivers. It keeps drivers engaged positively by issuing a relevant warning for significant contextual anomalies and avoids issuing a warning for minor operational errors.

Originality/value

This paper contributes to the existing literature by providing an ML pipeline approach to track and monitor instantaneous fuel economy rather than relying on average fuel economy values. The approach is further extended to detect contextual driving behaviour anomalies and optimises fuel economy. The main contributions for this approach are as follows: (1) a prediction model is applied to fine-grained time series driving data to predict instantaneous fuel consumption. (2) Anomalous fuel economy is detected by comparing prediction error against a threshold and analysing error patterns based on contextual information.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 7 April 2020

Theodoros Anagnostopoulos, Chu Luo, Jino Ramson, Klimis Ntalianis, Vassilis Kostakos and Christos Skourlas

The purpose of this paper is to propose a distributed smartphone sensing-enabled system, which assumes an intelligent transport signaling (ITS) infrastructure that operates…

Abstract

Purpose

The purpose of this paper is to propose a distributed smartphone sensing-enabled system, which assumes an intelligent transport signaling (ITS) infrastructure that operates traffic lights in a smart city (SC). The system is able to handle priorities between groups of cyclists (crowd-cycling) and traffic when approaching traffic lights at road junctions.

Design/methodology/approach

The system takes into consideration normal probability density function (PDF) and analytics computed for a certain group of cyclists (i.e. crowd-cycling). An inference model is built based on real-time spatiotemporal data of the cyclists. As the system is highly distributed – both physically (i.e. location of the cyclists) and logically (i.e. different threads), the problem is treated under the umbrella of multi-agent systems (MAS) modeling. The proposed model is experimentally evaluated by incorporating a real GPS trace data set from the SC of Melbourne, Australia. The MAS model is applied to the data set according to the quantitative and qualitative criteria adopted. Cyclists’ satisfaction (CS) is defined as a function, which measures the satisfaction of the cyclists. This is the case where the cyclists wait the least amount of time at traffic lights and move as fast as they can toward their destination. ITS system satisfaction (SS) is defined as a function that measures the satisfaction of the ITS system. This is the case where the system serves the maximum number of cyclists with the fewest transitions between the lights. Smart city satisfaction (SCS) is defined as a function that measures the overall satisfaction of the cyclists and the ITS system in the SC based on CS and SS. SCS defines three SC policies (SCP), namely, CS is maximum and SS is minimum then the SC is cyclist-friendly (SCP1), CS is average and SS is average then the SC is equally cyclist and ITS system friendly (SCP2) and CS is minimum and SS is maximum then the SC is ITS system friendly (SCP3).

Findings

Results are promising toward the integration of the proposed system with contemporary SCs, as the stakeholders are able to choose between the proposed SCPs according to the SC infrastructure. More specifically, cyclist-friendly SCs can adopt SCP1, SCs that treat cyclists and ITS equally can adopt SCP2 and ITS friendly SCs can adopt SCP3.

Originality/value

The proposed approach uses internet connectivity available in modern smartphones, which provide users control over the data they provide to us, to obviate the installation of additional sensing infrastructure. It extends related study by assuming an ITS system, which turns traffic lights green by considering the normal PDF and the analytics computed for a certain group of cyclists. The inference model is built based on the real-time spatiotemporal data of the cyclists. As the system is highly distributed – both physically (i.e. location of the cyclists) and logically (i.e. different threads), the system is treated under the umbrella of MAS. MAS has been used in the literature to model complex systems by incorporating intelligent agents. In this study, the authors treat agents as proxy threads running in the cloud, as they require high computation power not available to smartphones.

Details

Journal of Systems and Information Technology, vol. 22 no. 1
Type: Research Article
ISSN: 1328-7265

Keywords

Article
Publication date: 23 December 2019

Maciel M. Queiroz, Susana Carla Farias Pereira, Renato Telles and Marcio C. Machado

The Industry 4.0 phenomenon is bringing unprecedented disruptions for all traditional business models and hastening the need for a redesign and digitisation of activities. In this…

9360

Abstract

Purpose

The Industry 4.0 phenomenon is bringing unprecedented disruptions for all traditional business models and hastening the need for a redesign and digitisation of activities. In this context, the literature concerning the digital supply chain (DSC) and its capabilities are in the early stages. To bridge this gap, the purpose of this paper is to propose a framework for digital supply chain capabilities (DSCCs).

Design/methodology/approach

This paper uses a narrative literature approach, based on the main Industry 4.0 elements, supply chain and the emerging literature concerning DSC disruptions, to build an integrative framework to shed light on DSCCs.

Findings

The study identifies seven basic capabilities that shape the DSCC framework and six main enabler technologies, derived from 13 propositions.

Research limitations/implications

The proposed framework can bring valuable insights for future research development, although it has not been tested yet.

Practical implications

Managers, practitioners and all involved in the digitalisation phenomenon can utilise the framework as a starting point for other business digitalisation projects.

Originality/value

This study contributes to advancing the DSC literature, providing a well-articulated discussion and a framework regarding the capabilities, as well as 13 propositions that can generate valuable insights for other studies.

Details

Benchmarking: An International Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 4 July 2016

Herbert Martins Gomes

The purpose of this paper is to investigate the optimum design of a quarter car passive suspension system using a particle swarm optimization algorithm in order to minimize the…

Abstract

Purpose

The purpose of this paper is to investigate the optimum design of a quarter car passive suspension system using a particle swarm optimization algorithm in order to minimize the applied loads and vibrations.

Design/methodology/approach

The road excitation is assumed as zero-mean random field and modeled by single-sided power spectral density (PSD) based on international standard ISO 8608. The variance of sprung mass displacements and variance of dynamic applied load are evaluated by PSD functions and used as cost function for the optimization.

Findings

The advantages in using this methodology are emphasized by an example of the multi-objective optimization design of suspension parameters and the results are compared with values reported in the literature and other gradient based and heuristic algorithms. The paper shows that the algorithm effectively leads to reliable results for suspension parameters with low computational effort.

Research limitations/implications

The procedure is applied to a quarter car passive suspension design.

Practical implications

The proposed procedure implies substantial time savings due to frequency domain analysis.

Social implications

The paper proposes a procedure that allows complex optimization designs to be feasible and cost effective.

Originality/value

The design optimization is performed in the frequency domain taking into account standard defined road profiles PSD without the need to simulate in the time domain.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 12 July 2022

Tianyue Feng, Lihao Liu, Xingyu Xing and Junyi Chen

The purpose of this paper is to search for the critical-scenarios of autonomous vehicles (AVs) quickly and comprehensively, which is essential for verification and validation…

Abstract

Purpose

The purpose of this paper is to search for the critical-scenarios of autonomous vehicles (AVs) quickly and comprehensively, which is essential for verification and validation (V&V).

Design/methodology/approach

The author adopted the index F1 to quantitative critical-scenarios' coverage of the search space and proposed the improved particle swarm optimization (IPSO) to enhance exploration ability for higher coverage. Compared with the particle swarm optimization (PSO), there were three improvements. In the initial phase, the Latin hypercube sampling method was introduced for a uniform distribution of particles. In the iteration phase, the neighborhood operator was adapted to explore more modals with the particles divided into groups. In the convergence phase, the convergence judgment and restart strategy were used to explore the search space by avoiding local convergence. Compared with the Monte Carlo method (MC) and PSO, experiments on the artificial function and critical-scenarios search were carried out to verify the efficiency and the application effect of the method.

Findings

Results show that IPSO can search for multimodal critical-scenarios comprehensively, with a stricter threshold and fewer samples in the experiment on critical-scenario search, the coverage of IPSO is 14% higher than PSO and 40% higher than MC.

Originality/value

The critical-scenarios' coverage of the search space is firstly quantified by the index F1, and the proposed method has higher search efficiency and coverage for the critical-scenarios search of AVs, which shows application potential for V&V.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 2 August 2021

Modupeola Dada, Patricia Popoola and Ntombi Mathe

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential…

1478

Abstract

Purpose

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

Design/methodology/approach

Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

Findings

HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

Research limitations/implications

The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

Originality/value

It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 13